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Direct Limits of Effect Algebras†
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In this paper, we prove that direct limits exist in the category of effect algebras
and effect algebra-morphisms. Then, as a consequence, we obtain similar known
results for the categories of orthomodular posets and orthomodular lattices.

1. INTRODUCTION

The effects of a quantum mechanical system 6 can be represented by
self-adjoint operators A on a separable complex Hilbert space * such that
O # A # I, where O and I are the zero and the identity operators, respectively,
on * [6]. The set %(*) of all such operators A forms an (ordered) algebraic
structure which is the prototypical example of the effect algebras (and differ-
ence posets) discussed in this paper [6, 14], and it provides a mathematical
model for the study of unsharp quantum logics [6]. Furthermore, effect
algebras generalize the various ordered structures that have been used as
frameworks in the quantum logic approach to the foundation of quantum
physics which was originated about 60 years ago by Birkhoff and von Neu-
mann [2], who proposed the framework of a modular, complemented lattice.
This framework was later generalized to orthomodular lattices and posets [1,
9, 10, 13, 15–17], and most recently to orthoalgebras [7, 10–12].

Direct and inductive limits of orthomodular lattices and posets were
considered by Fischer and Rüttimann [5] and by Dacey [4], who showed
their connection and importance to the study of operational statistics and
quantum field theory [8, 9, 19, 16]. In this paper, we shall study direct limits
of effect algebras. By choosing suitable morphisms, effect algebras form a
(concrete) category. We shall prove, by construction, that direct limits in such
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a category exist (see Theorems 3.1 and 3.14). Then, as a consequence, we
obtain the result (see Corollary 3.3) that such a direct limit is an orthomodular
poset if each of the effect algebras of the directed system is an orthomodular
poset, and the result (see Theorem 3.9) that such a direct limit is an orthomodu-
lar lattice if each of the effect algebras of the direct system is an orthomodular
lattice and if each of the effect algebra-monomorphisms preserves disjointness
(see Definition 3.6). This last result is an improvement of a corresponding
result of Dacey [4] and of Fischer and Rüttimann [5], where it is assumed
that the effect algebra-monomorphisms are residuated (see Definition 3.10).
We mention that similar results for difference posets have recently been
obtained by S. Pulmannovà [18].

2. DEFINITIONS AND PRELIMINARIES

The following definition was introduced by Foulis and Bennett [6].

Definition 2.1. An effect algebra (abbreviated EA) is a system (L, %,
0, 1) consisting of a set L containing two special elements 0, 1 and equipped
with a partially defined binary operation % satisfying the following conditions
∀a, b, c P L:

(EA1) (Commutative law) If a % b is defined, then b % a is defined
and a % b 5 b % a.

(EA2) (Associative law) If b % c is defined and a % (b % c) is defined,
then a % b is defined, (a % b) % c is defined, and a % (b %
c) 5 (a % b) % c.

(EA3) (Orthocomplementation law) For every a P L there exists a
unique b P L such that a % b is defined and a % b 5 1.

(EA4) (Zero–one law) If 1 % a is defined, then a 5 0.

Let L 5 (L, %, 0, 1) be an effect algebra and a, b P L. Following [6],
we say that a is orthogonal to b in L and write a ' b if and only if a % b
is defined in L. We define a # b to mean that there exists c P L such that
a ' c and b 5 a % c. The unique element b P L corresponding to a in
Condition (EA3) is called the orthocomplement of a and is written as a8 :5
b. For any effect algebra L, it can be easily proved [6] that 0 # a # 1 holds
for all a P L, that a ' b iff a # b8, that, with # as defined above, (L, #,
0, 1) is a partially ordered set (poset), and that L satisfies the so-called
orthomodular identity (OMI):

∀a, b P L, a # b ⇒ b 5 a % (a % b8)8

For a, b, c P L, we write c 5 a ∨ b (resp., c 5 a ∧ b) to indicate that c is
the least upper bound (resp., greatest lower bound) of a and b in the poset
(L, #, 0, 1).
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Definition 2.2. An orthoalgebra [7, 10, 12] is an effect algebra L in
which the zero–one law is replaced by the stronger condition: a P L, a %
a defined ⇒ a 5 0. Recall that an orthomodular poset (OMP) [10] may be
regarded as an orthoalgebra L that satisfies the following additional condition
[7]: a, b P L, a ' b ⇒ a ∨ b exists and a ∨ b 5 a % b. An orthomodular
lattice (OML) may be defined as an OMP which is also a lattice.

Definition 2.3. Let L and Q be EAs. A mapping f : L → Q is called an
EA-morphism iff (i) f(1) 5 1 and (ii) for a, b P L, a ' b ⇒ f(a) ' f(b)
and f(a % b) 5 f(a) % f(b). Following [11], an EA-morphism f : L → Q
is called special if it satisfies the following condition:

u, v P f (L), u ' v ⇒ ∃ a, b P L with a ' b,

f(a) 5 u, and f(b) 5 v

An EA-morphism f : L → Q is called a monomorphism if it is special and
there is an EA-morphism c: f(L) → L such that cf 5 idL , where idL denotes
the identity mapping on L.

It can be easily checked [11] that if f : L → Q is an EA-morphism,
then the following hold: (a) f(0) 5 0, (b) f(a8) 5 f(a)8 ∀a P L, and (c)
for a, b P L, a # b ⇒ f(a) # f(b). Furthermore, it can be shown [11,
Theorem 2. 6] that an EA-morphism f : L → Q is a monomorphism iff ∀a,
b P L, a ' b in L ⇔ f(a) ' f(b) in Q. For more about EA-morphisms
(which are the same as orthoalgebra-morphisms), the reader may consult [11].

Throughout the paper, we let % denote the category with effect algebras
as objects and with EA-monomorphisms as morphisms.

Definition 2.4. A directed system in the category % is a pair
({La}aPD; {fa

b}a#b), where (i) D is a directed set, (ii) La is an EA ∀a P D,
(iii) if a, b P D, a # b, then fa

b: La → Lb is an EA-monomorphism, (iv)
fb

gfa
b 5 fa

g for a # b # g, and (v) fa
a 5 idLa.

A direct (or inductive) limit of a directed system ({La}aPD; {fa
b}a#b)

P % is a pair (L; {fa}aPD) P %, where L is an EA and each fa: La → L is
an EA-monomorphism such that (a) fbfa

b 5 fa for a # b and (b) if ca: La

→ Q, where Q is an EA and ca is an EA-monomorphism, are given such
that cbfa

b 5 ca for a # b, then there exists a unique EA-monomorphism
c: L → Q such that ca 5 cfa for a P D.

In the sequel, we let ({La}aPD; {fa
b}a#b) be a fixed directed system in

the category % with La ù Lb 5 0⁄ if a Þ b, and we let X :5 øaPDLa.

Definition 2.5. Define a relation , on X by: x , y, x P La, y P Lb, iff
∃g P D such that a, b # g and fa

g x 5 fb
g y.
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It is easy to see that , is an equivalence relation on X, and if x P La,
y P Lb and x , y, then for any g P D such that a, b # g we have fa

gx 5
fb

gy.

Definition 2.6. Let x :5 {y P X: y , x}, and let L :5 {x: x P X}.
Define a partial binary operation % on L by: x % y is defined in L iff ∃a P
D, xa P x ù La and ya P y ù La such that xa % ya is defined in La. In this
case, we shall write x % y :5 xa % ya.

Lemma 2.7. If x % y is defined in L, xb P x ù Lb and yb P y ù Lb,
then xb % yb is defined in Lb and x % y 5 xb % yb. In particular, % as
defined above is well defined.

Proof. Since x % y is defined in L, ∃a P D, xa P x ù La and ya P y
ù La such that xa % ya is defined in La. Choose g P D such that a, b #
g. Then fa

gxa % fa
gya is defined in Lg. Since xa , xb, ya , yb, and a, b #

g, we have fa
gxa 5 fb

gxb and fa
gya 5 fb

gyb. Hence fa
g(xa % ya) 5 fa

gxa %
fa

gya 5 fb
gxb % fb

gyb 5 fb
g(xb % yb), which implies that xb % yb is defined

in Lb (since fb
g is an EA-monomorphism) and xa % ya , xb % yb. Therefore

x % y 5 xb % yb. n

The proof of the following lemma is straightforward.

Lemma 2.8. 1. If x P La, y P Lb, and x , y, then x8 , y8.
2. If xa, ya P La and xa , ya, then xa 5 ya.
3. 0a , 0b, where 0a and 0b are the least elements in La and Lb,

respectively.
4. 1a , 1b, where 1a and 1b are the greatest elements in La and Lb,

respectively.
Moreover, 0a and 1a, a P D, are the least and the greatest elements in

L, respectively.

Note that Lemma 2.8 justifies the following definition.

Definition 2.9. Let 1 :5 1a, a P D, and 0 :5 0a, a P D.

Using Definitions 2.6, 2.9, and Lemmas 2.7, 2.8, it is easy to prove the
following result.

Lemma 2.10. (L, %, 0, 1) is an effect algebra.

3. RESULTS

Now we are ready to establish the main result of this article.

Theorem 3.1. The direct limit of any directed system of effect algebras
exists. More precisely, if ({La}aPD; {fa

b}a#b) is a directed system in the
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category %, then its direct limit exists in the same category and equals (L,
{fa}aPD) where L is as defined in Definition 2.6 and fa: La → L is defined
by faxa :5 xa.

Proof. Let ({La}aPD; {fa
b}a#b) be a directed system in % and let (L, %,

0, 1) be as in Definitions 2.6 and 2.9. Then by Lemma 2.10, L is an EA. By
the definition of fa we have fa(xa % ya) 5 xa % ya 5 xa % ya 5 fa(xa)
% fa( ya), fa(1a) 5 1a 5 1, and, if faxa ' faya in L, then faxa % faya

5 xa % ya is defined in L, and hence, by Lemma 2.7, xa % ya is defined in
La. Thus xa ' ya in La and therefore, by the remarks following Definition
2.3, fa is an EA-monomorphism.

Next, we shall show that the EA-monomorphisms fa, a P D, satisfy
conditions (a) and (b) of Definition 2.4. First, note that fa

bxa , xa for all
a # b, since fb

gfa
bxa 5 fa

gxa ∀g P D with a, b # g. It follows that for all
xa P La and for all a # b, we have fbfa

bxa 5 fa
bxa 5 xa 5 faxa. Therefore

fbfa
b 5 fa ∀a # b.
Second, suppose that there exists (Q; {ca}aPD) in the same category %

such that cbfa
b 5 ca for all a # b. Define c: L → Q by cxa :5 caxa, a P

D. Then c is well defined, since, if xb P xa ù Lb, then ∃g P D such that
a, b # g and fb

gxb 5 fa
gxa, which implies that cbxb 5 cgfb

gxb 5 cgfa
gxa

5 caxa. Also, we have c(xa % ya) 5 c(xa % ya) 5 ca(xa % ya) 5 caxa %
caya 5 cxa % cya, c(1L) 5 c(1a) 5 ca(1a) 5 1Q , and if cxa ' cya in Q,
then cxa % cya 5 caxa % caya 5 ca(xa % ya) is defined in Q, which implies
that xa % ya is defined in La and this implies that xa % ya is defined in L,
by Definition 2.6. Thus c is an EA-monomorphism.

Finally, if there is an EA-monomorphism f : L → Q such that ffa 5
ca ∀a P D, then fxa 5 ffaxa 5 caxa 5 cxa ∀a P D. Thus, c is the
unique EA-monomorphism such that cfa 5 ca ∀a P D. n

Before we derive some consequences of Theorem 3.1, we need to estab-
lish a few more lemmas.

Lemma 3.2. Suppose that each La, a P D, is an OMP. If x ' y in L,
then x ∨ y exists in L and x ∨ y 5 x % y.

Proof. The proof is straightforward and therefore it is omitted. n

Corollary 3.3. The direct limit of a directed system of effect algebras
is an orthomodular poset if each of the effect algebras in the directed system
is an orthomodular poset.

Proof. It follows from Theorem 3.1, Lemma 3.2, and the fact [7, Theorem
2.11] that an EA in which the join of every orthogonal pair exists is an
OMP. n



716 Habil

Remark 3.4. Theorem 3.1 and Corollary 3.3 contain the result [5, part
III.B] that direct limits exist in the category of orthomodular posets and
orthomodular poset-monomorphisms.

Although the proof of the following lemma appears in [6, Theorem 6.6],
the proof given here was independently obtained by the author while working
on an earlier version of this paper with Prof. R. J. Greechie at Louisiana
Tech University during the spring of 1993.

Lemma 3.5. Let L1 and L2 be OMLs, and let f : L1 → L2 be an EA-
morphism. Then f is an OML-morphism iff x, y P L1, x ∧ y 5 0 ⇒ f(x)
∧ f( y) 5 0.

Proof. If f is an OML-morphism, then the claimed implication trivially
holds. Conversely, suppose that ∀x, y P L1 { x ∧ y 5 0 we have f(x) ∧
f( y) 5 0. We claim that f(a ∧ b) 5 f(a) ∧ f(b) ∀a, b P L1. Indeed, it is
clear that f(a ∧ b) # f(a) ∧ f(b) for a, b P L1. To show equality, it is
enough to show, using the orthomodular identity, that f(a) ∧ f(b) ∧ (f(a ∧
b))8 5 0. By the orthomodular identity, we see that a8 # a8 ∨ b8 ⇒ f(a8 ∨
b8) 5 f(a8) ∨ f((a8 ∨ b8) ∧ a), and that b8 # a8 ∨ b8 ⇒ f(a8 ∨ b8) 5 f(b8)
∨ f((a8 ∨ b8) ∧ b). Hence, using the hypothesis, we have

f(a) ∧ f(b) ∧ (f(a ∧ b))8 5 (f(a) ∧ f(a8 ∨ b8)) ∧ (f(b) ∧ f(a8 ∨ b8))

5 f(a) ∧ (f(a8) ∨ f((a8 ∨ b8) ∧ a)) ∧ f(b)

∧ (f(b8) ∨ f((a8 ∨ b8) ∧ b))

5 f(a) ∧ f((a8 ∨ b8) ∧ a) ∧ f(b)

∧ f((a8 ∨ b8) ∧ b)

5 f((a8 ∨ b8) ∧ a) ∧ f ((a8 ∨ b8) ∧ b) 5 0

since (a8 ∨ b8) ∧ a ∧ (a8 ∨ b8) ∧ b 5 (a8 ∨ b8) ∧ (a ∧ b) 5 0. This proves
the claim. Now since f preserves orthocomplementation, the above claim
and the De Morgan law imply that f preserves joins. Therefore, f is an
OML-morphism. n

Definition 3.6. We say that a morphism f : L → Q of EAs preserves
disjointness if x ∧ y 5 0 in L ⇒ f(x) ∧ f( y) 5 0 in Q.

The proof of the following lemma follows from Lemma 3.5 and the
remark following Definition 2.5.

Lemma 3.7. Assume each La, a P D, is an OML, and each fa
b, a, b P

D, a # b preserves disjointness. If xa, ya P La and xb, yb P Lb, and if xa ,
xb and ya , yb, then xa ∨ ya , xb ∨ yb.
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Lemma 3.8. Assume that each La, a P D, is an OML and each fa
b, a,

b P D, a # b, preserves disjointness. Then x ∨ y exists in L for all x, y P L.

Proof. Let x, y P L. There exist a, b P D such that xa 5 x and yb 5
y. Choose g P D such that a, b # g. Then ∃xg, yg P Lg such that xg 5 xa

and yg 5 yb. Since Lg is an OML, xg ∨ yg exists in Lg. Since xg, yg # xg ∨
yg, we have xg, yg # xg ∨ yg.

Now suppose that ∃u P L, xg, yg # u. Then ∃d1 P D, ud1 5 u. Choose
d2 P D, d1, g # d2. Then ∃xd2, yd2, ud2 P Ld2 such that xd2 5 xg, yd2 5 yg,
and ud2 5 ud1 5 u. Thus xd2, yd2 # ud2. This implies that there exist d P D
and xd, yd, ud P Ld such that xd 5 xd2, yd 5 yd2, ud 5 ud2, and xd, yd # ud.
Hence xd ∨ yd # ud, which implies that xd ∨ yd # ud. By Lemma 3.7, since
xd , xd2 , xg and yd , yd2 , yg, we have xg ∨ yg 5 xd2 ∨ yd2 5 xd ∨ yd #
ud 5 ud2 5 u. Therefore, since xg 5 x and yg 5 y, x ∨ y exists in L and x ∨
y 5 xg ∨ yg. n

As a consequence of Corollary 3.3, Lemma 3.5, and Lemma 3.8, we
obtain the following main result.

Theorem 3.9. Let ({La}aPD; {fa
b}a#b) be a directed system in % such

that each fa
b preserves disjointness, and let (L, {fa}aPD) be its direct limit.

Assume that each La is an OML. Then L is an OML and each fa preserves
disjointness; hence (L, {fa}aPD) P +, the category of OMLs with their
monomorphisms.

Proof. We need only show that each fa preserves disjointness, since
the other assertions follow from the above-mentioned results. To this end,
fix a P D and let xa, ya P La be such that xa ∧ ya 5 0. We claim that
faxafayaexists in L and equals 0. To see this, suppose that ∃l P L { faxa,
faya $ l in L. Then ∃b $ a { l 5 fb(zb) for some zb P Lb. As fa 5
fbfa

b, we get fbfa
bxa, fbfa

bya $ fb(zb). Since fb is an EA-monomorphism,
this implies that fa

bxa, fa
bya $ zb and hence zb is a lower bound of {fa

bxa,
fa

bya} in Lb. Now, by Lemma 3.5, fa
b is an OML-morphism, since it preserves

disjointness; so we have 0 5 fa
b(xa ∧ ya) 5 fa

bxa ∧ fa
bya. This yields that

zb 5 0 and therefore l 5 fb(zb) 5 0. This proves the claim, and hence
the theorem. n

Definition 3.10. Let L and P be posets. A map f : L → P is called
monotone if x # y in L implies that f(x) # f( y) in P. A monotone map f :
L → P is called residuated provided that there exists a monotone map c: P
→ L such that cf(x) $ x ∀x P L and fc( p) # p ∀p P P.

Note that for each residuated map f : L → P there is a unique c as
above. This unique c is called the residual of f. It is well known from the
theory of residuated maps [3] that a residuated map preserves all existing
joins. Moreover, we have the following result.
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Lemma 3.11. Every residuated EA-morphism preserves disjointness.

Proof. Let L and P be EAs and let f : L → P be a residuated EA-
morphism. Let a, b P L with a ∧ b 5 0. Then by the De Morgan law a8 ∨
b8 exists in L and equals (a ∧ b)8 5 1. Since f is residuated, f(a8 ∨ b8) 5
f(a8) ∨ f(b8). Since f is an EA-morphism, f(1) 5 1, f(a8) 5 f(a)8, and
f(b8) 5 f(b)8. Thus 1 5 f((a ∧ b)8) 5 f(a8 ∨ b8) 5 f(a)8 ∨ f(b)8, and
so, by the De Morgan law again, f(a) ∧ f(b) 5 0. n

As a consequence of Theorem 3.9 and Lemma 3.11, we obtain the
following result, which is due to Dacey [4] and Fischer and Rüttimann [5].

Corrollary 3.12. Let ({La}aPD; {fa
b}a#b) be a directed system in + with

residuated morphisms fa
b, and let (L, {fa}aPD) be its direct limit. Then (L,

{fa}aPD) P +. Moreover, the morphisms fa, a P D, are residuated.

Proof. That (L, {fa}aPD) P + follows immediately from Theorem 3.9
and Lemma 3.11. The proof that the fa are residuated can be found in [5,
pp. 150–151]. n

Before we close this section, we would like to mention that Theorem
3.1 can be improved as follows. But, first, in the notation of Section 2, we
have the following

3.13 Lemma. x % y, x P La, y P Lb, is defined in L (as in Definition
2.6) iff there exists g $ a, b such that fa

gx % fb
gy is defined in Lg.

Proof. (⇒): Assume that x % y is defined in L, where x P La, y P Lb.
Then, by Definition 2.6, there exist d P D, xd P x ù Ld and yd P y ù Ld

such that xd % yd is defined in Ld. Since xd , x, ∃g1 $ d, a { fd
g1xd 5

fa
g1x, and since yd , y, ∃g2 $ d, b { fd

g2yd 5 fd
gy. Choose g $ d, g1, g2. Then

fa
gx 5 fg1

g fa
g1x 5 fg1

g fd
g1xd 5 fd

gxd and fb
gy 5 fg2

g fb
g2y 5 fg2

g fd
g2yd 5 fd

gyd.

Now since xd % yd is defined in Ld and fd
g is a morphism, we get that

fd
g(xd % yd) 5 fa

gx % fb
gy is defined in Lg, as desired.

(⇐): Assume that ∃g $ a, b such that fa
gx % fb

gy is defined in Lg.
Choose d $ a, b, g, and set xg :5 fa

gx and yg :5 fb
gy. Then xg P x ù Lg

since fg
dxg 5 fg

dfa
gx 5 fa

dx, and yg P y ù Lg since fg
dyg 5 fg

ddb
gy 5 fb

gy.
Moreover, xg % yg 5 fa

gx % fb
gy is defined in Lg. Therefore, by Definition

2.6, x % y is defined in L. n

Note that Lemma 3.13 yields a %-operation on L 5 {x : x P X 5
øaPD La} by setting x % y :5 (fa

gx % fb
gy) which is equivalent to the %-

operation given in Definition 2.6. It is easy to check that this %-operation
is well-defined.
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Now using the above definition of % on L and using Lemma 3.13, it
can be shown that the proof of Theorem 3.1 and the results leading to it can
be adjusted to yield the following result, which is an improvement of Theorem
3.1. This improved result is equivalent to Theorem 2.7 of [18] for difference
posets, since an effect algebra is equivalent to a difference poset [6].

3.14 Theorem. Direct limits exist in the category of effect algebras and
effect algebra-morphisms. That is, if ({La}aPD; {fa

b}a#b) is a directed system
of effect algebras, where fa

b is a morphism for all a, b P D, a # b, then
its direct limit exists (in the same category) and equals (L, {fa}aPD), where
L is as defined in Definition 2.6 and fa : La → L is defined by faxa 5 xa.
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