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Direct Limits of Effect Algebras’
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In this paper, we prove that direct limits exist in the category of effect algebras
and effect algebra-morphisms. Then, as a consequence, we obtain similar known
results for the categories of orthomodular posets and orthomodular lattices.

1. INTRODUCTION

The effects of a quantum mechanical system & can be represented by
self-adjoint operators A on a separable complex Hilbert space # such that
O =A=1,whereOand| arethe zero and the identity operators, respectively,
on # [6]. The set €(#) of all such operators A forms an (ordered) algebraic
structure which is the prototypical example of the effect algebras (and differ-
ence posets) discussed in this paper [6, 14], and it provides a mathematical
model for the study of unsharp quantum logics [6]. Furthermore, effect
algebras generalize the various ordered structures that have been used as
frameworks in the quantum logic approach to the foundation of quantum
physics which was originated about 60 years ago by Birkhoff and von Neu-
mann [2], who proposed the framework of a modular, complemented lattice.
This framework was later generalized to orthomodular lattices and posets [1,
9, 10, 13, 15-17], and most recently to orthoalgebras [7, 10-12].

Direct and inductive limits of orthomodular lattices and posets were
considered by Fischer and Ruttimann [5] and by Dacey [4], who showed
their connection and importance to the study of operational statistics and
quantum field theory [8, 9, 19, 16]. In this paper, we shall study direct limits
of effect algebras. By choosing suitable morphisms, effect algebras form a
(concrete) category. We shall prove, by construction, that direct limitsin such
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a category exist (see Theorems 3.1 and 3.14). Then, as a consequence, we
obtain the result (see Corollary 3.3) that such adirect limit is an orthomodul ar
poset if each of the effect algebras of the directed system is an orthomodular
poset, and theresult (see Theorem 3.9) that such adirect limit isan orthomodu-
lar lattice if each of the effect algebras of the direct system isan orthomodular
lattice and if each of the effect al gebra-monomorphisms preserves dijointness
(see Definition 3.6). This last result is an improvement of a corresponding
result of Dacey [4] and of Fischer and Rittimann [5], where it is assumed
that the effect algebra-monomorphisms are residuated (see Definition 3.10).
We mention that similar results for difference posets have recently been
obtained by S. Pulmannova [18].

2. DEFINITIONS AND PRELIMINARIES
The following definition was introduced by Foulis and Bennett [6].

Definition 2.1. An effect algebra (abbreviated EA) is a system (L, D,
0, 1) consisting of a set L containing two special elements 0, 1 and equipped
with apartially defined binary operation & satisfying the following conditions
Oa, b, c e L:

(EAL) (Commutative law) If a @ b is defined, then b & a is defined
anda®b=b®da

(EA2) (Associativelaw) If b cisdefined and a® (b & c) is defined,
then a @ b is defined, (a @ b) @ cis defined, and a ® (b D
c)=(adh) ®c

(EA3) (Orthocomplementation law) For every a e L there exists a
unique b € L such that a® bisdefinedanda® b = 1.

(EA4) (Zero—one law) If 1 a is defined, then a = 0.

LetL = (L, &, 0, 1) be an effect algebraand a, b € L. Following [6],
we say that a is orthogonal to b in L and writea L bif andonly if a® b
is defined in L. We define a = b to mean that there exists ¢ e L such that
al candb = a® c Theunique element b e L corresponding to a in
Condition (EAS3) is called the orthocomplement of a and iswritten asa’ :=
b. For any effect algebra L, it can be easily proved [6] that 0 = a < 1 holds
foralae L, thaal biffa=<b’, that, with = as defined above, (L, =,
0, 1) is a partially ordered set (poset), and that L satisfies the so-called
orthomodular identity (OMI):

Oa,bel, a=bdb=ad@db)

Fora, b,c e L, wewritec = a b (resp., c = a 0b) to indicate that c is
the least upper bound (resp., greatest lower bound) of a and b in the poset
L, =,0 1).
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Definition 2.2. An orthoalgebra [7, 10, 12] is an effect algebra L in
which the zero—one law is replaced by the stronger condition: a € L, a @
a defined O a = 0. Recall that an orthomodular poset (OMP) [10] may be
regarded as an orthoalgebra L that satisfies the following additional condition
[7:a,belL,al bl albexistsand a b = a® b. An orthomodular
lattice (OML) may be defined as an OMP which is aso a lattice.

Definition 2.3. Let L and Q be EAs. A mapping ¢: L - Qiscaled an
EA-morphism iff (i) $(1) = Land (ii) fora,b e L,a L b0 ¢(@) L d(b)
and d(a D b) = d(a) D d(b). Faollowing [11], an EA-morphism é: L - Q
is called special if it satisfies the following condition:

uved(l), ulvd Oabel with alhb,
é@=u, and &) =v

An EA-morphism ¢: L - Q is caled a monomorphism if it is specia and
thereis an EA-morphism {i: $(L) — L suchthat ¢s¢ = id_, where id, denotes
the identity mapping on L.

It can be easily checked [11] that if ¢: L - Q is an EA-morphism,
then the following hold: (&) $(0) = 0, (b) d(a’) = d(a)’ Da € L, and (c)
fora,be L, ,a=b0 ¢@ = ¢(b). Furthermore, it can be shown [11,
Theorem 2. 6] that an EA-morphism ¢: L - Q is a monomorphism iff Oa,
bel,albinL « ¢(@ L &(b) in Q. For more about EA-morphisms
(which are the same as orthoa gebra-morphisms), the reader may consult [11].

Throughout the paper, we let € denote the category with effect algebras
as objects and with EA-monomorphisms as morphisms.

Definition 2.4. A directed system in the category € is a pair
({La}acps { bR} a=p), Where (i) D is adirected set, (ii) L, isan EA Oa € D,
(iii) if o, B € D, a = B, then d§: L, — Lg is an EA-monomorphism, (iv)
dBdg = dY for o = B = vy, and (v) ¢ = id,.

A direct (or inductive) limit of a directed system ({L.}ocp; {di}a=p)
e €isapair (L; {d*}oep) € €, WhereL isan EA and each ¢*: L, —» L is
an EA-monomorphism such that (a) $Pd§ = ¢ for o = B and (b) if ¥, L,
- Q, where Q is an EA and s, is an EA-monomorphism, are given such
that ypdbg = U, for o = B, then there exists a unique EA-monomorphism
U: L —» Q such that s, = ¥ for a € D.

In the sequel, we let ({L.}«co; {df}a=p) be afixed directed system in
the category € withL, N Ly = D if o # B, and we let X := U,cpl,.

Definition 2.5. Define arelation ~ on Xby: x ~y, x € L, ¥ € Ly, iff
Oy € Dsuchthat o, B =y and ¢p2x = dBy.
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It is easy to see that ~ is an equivalence relation on X, and if X € L,,
y € Lg and x ~ y, then for any y € D such that o, B = y we have ¢5x =

bly.

Definition 26. Let X ;= {y e XXy ~ x}, and let L := {X x € X}.
Define a partial binary operation © on L by: x ® yisdefined in L iff [x e
D,x, e XxNlL,andy, € yN L, such that x, @ vy, isdefined in L,. In this
case, we shall writeX @y := x, D vy,.

Lemma 2.7. If x D yisdefined inL, x; e XN Lgandyg € ¥y N Ly,
then x; D yp is defined in Ly and X Dy = X3 D yp. In particular, © as
defined above is well defined.

Proof. Sincex @ yisdefined inL, [(x € D, X, e XN L,andy, € y
N L, such that x, @ vy, is defined in L,. Choose vy € D such that o, B =
v. Then d5x, © ¢y, isdefinedinL,. Since X, ~ Xg, Yo ~ Vg @d o, B =
v, we have d5x, = dfixg and &gy, = dfyp. Hence (%, © y.) = dsx, @
b2y, = dBxg D dByy = dB(xg D yp), Which implies that Xz @ g is defined
in Lg (since ¢ is an EA-monomorphism) and x, @ y, ~ Xz © ys. Therefore
X @ V = XB @ yB' |

The proof of the following lemma is straightforward.

Lemma28. 1. If x € L,y € Lg,andx ~ y, thenx’ ~ y'.

2. If X4 Vo € Ly and X, ~ V., then x, = v..

3. 0, ~ 0g, where 0, and Oy are the least elements in L, and Lg,
respectively.

4. 1, ~ 15, where 1, and 1; are the greatest elements in L, and Lg,
respectively.

Moreover, 0, and 1., « € D, are the least and the greatest elements in
L, respectively.

Note that Lemma 2.8 justifies the following definition.

Definition 2.9. Let 1:= 1, a« € D,and0:=0,, «  D.

Using Definitions 2.6, 2.9, and Lemmas 2.7, 2.8, it is easy to prove the
following result.

Lemma 2.10. (L, &, 0O, 1) is an effect algebra.

3. RESULTS
Now we are ready to establish the main result of this article.

Theorem 3.1. The direct limit of any directed system of effect algebras
exists. More precisely, if ({L.}acp: {df}a=p) is a directed system in the
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category €, then its direct limit exists in the same category and equals (L,
{$°} o) Where L is as defined in Definition 2.6 and ¢*: L, - L is defined

by d%, 1= X,

Proof. Let ({Lo}acos { $f}a=p) be adirected system in € and let (L, D,
0, 1) be asin Definitions 2.6 and 2.9. Then by Lemma 2.10, L is an EA. By
the definition of ¢~ we have ¢*(X, P VY.) = Xa P ¥y, = Xa D Vo = d*(X)
D d*(Ya), d*(L) = L, = 1, and, if d*x, L by, in L, then ¢x, & ¢y,
=X, DY, isdefined in L, and hence, by Lemma 2.7, x, @ vy, is defined in
L.. Thus x, L vy, in L, and therefore, by the remarks following Definition
2.3, &~ is an EA-monomorphism.

Next, we shall show that the EA-monomorphisms ¢*, o € D, satisfy
conditions (a) and (b) of Definition 2.4. First, note that bgx, ~ X, for all
a = B, since $EdEx, = %, Oy € D with «, B = . It follows that for all
X, € L, andforall a = B, we have dPdgx, = $iX, = X, = d°X,. Therefore
PR = b Do = B.

Second, suppose that there exists (Q; {U.}«<p) in the same category €
such that g = W, for all « = B. Define f: L — Q by YX, 1= PXy, ¢ €
D. Then s is well defined, since, if x; € X, N Lg, then Ty e D such that
a, B =y and ¢pBxs = X, which implies that Ygxs = b, dExs = P, X,
= PoXy Also, we have (X, © Yo) = WX, D Vo) = Va(Xa D Vo) = UoX, ©
Voo = VX B WY, W(1) = P(L) = du(ls) = Lo, and if PX; L 4y in Q,
then X, D Uy, = PuXe @ PoYs = Pu(Xe P Y,) isdefined in Q, which implies
that x, D v, is defined in L, and this implies that X, P V, is defined in L,
by Definition 2.6. Thus ¢ is an EA-monomorphism.

Finally, if there is an EA-monomorphism ¢: L - Q such that ¢ =
P, Oa € D, then dX, = ddp*X, = Xy = YX, Do € D. Thus, ¢ is the
unique EA-monomorphism such that ¢p* = ¢, Jo € D. =

Before we derive some consequences of Theorem 3.1, we need to estab-
lish a few more lemmas.

Lemma 3.2. Suppose that each L,, « € D, isan OMP. If X L yinL,
thenXx Oy existsinLand X 0y = XD V.

Proof. The proof is straightforward and therefore it is omitted. m

Corollary 3.3. The direct limit of a directed system of effect algebras

is an orthomodular poset if each of the effect algebras in the directed system
is an orthomodular poset.

Proof. It followsfrom Theorem 3.1, Lemma 3.2, and thefact [ 7, Theorem
2.11] that an EA in which the join of every orthogonal pair exists is an
OMP. =
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Remark 3.4. Theorem 3.1 and Corollary 3.3 contain the result [5, part
[11.B] that direct limits exist in the category of orthomodular posets and
orthomodular poset-monomorphisms.

Although the proof of the following lemma appearsin [6, Theorem 6.6],
the proof given here was independently obtained by the author while working
on an earlier version of this paper with Prof. R. J. Greechie at Louisiana
Tech University during the spring of 1993.

Lemma 3.5. Let L, and L, be OMLs, and let b: L; — L, be an EA-
morphism. Then ¢ is an OML-morphism iff X,y € Ly, x Oy = 00 &(X)
Od(y) = 0.

Proof. If ¢ isan OML-morphism, then the claimed implication trivially
holds. Conversely, suppose that [0x, y € L; = x Oy = 0 we have ¢(x) O
d(y) = 0. Weclam that d(a Ob) = (@) Ob(b) Oa, b € Ly. Indeed, it is
clear that d(a O b) = &(a) O d(b) for a, b € L,. To show equality, it is
enough to show, using the orthomodular identity, that ¢(a) O ¢(b) O (d(a O
b))’ = 0. By the orthomodular identity, we seethat a’ = a' Ob’' 0 ¢(@' O
b')=¢@)0¢((@ Ob')Ja),andthatb’ =a Ob’' O ¢(@ dOb’) = &(b')
Oé((@ Ob’) Ob). Hence, using the hypothesis, we have

d@) Od(b) O(d(@alb)) = (d(a) Dd(@ Ob')) O(d(b) D@ ObY))
= ¢(a) U(d(@) Uo((@ Ub’) Da)) Ud(b)
() Od((@" Ob’) b))
= ¢(@) Ud((@ Ub’) Oa) Od(b)
Oé(@ Ob') Oh)
— ¢((@ Ob)Oa) O (@ Ob') Ob) =0

snce(a’ Ob) OaO(@ Ob)Ob=(a’Ob") O(@0Ob) = 0. This proves
the claim. Now since ¢ preserves orthocomplementation, the above claim
and the De Morgan law imply that ¢ preserves joins. Therefore, ¢ is an
OML-morphism. =

Definition 3.6. We say that a morphism ¢: L — Q of EAS preserves
digointnessif x Jy = 0inL O ¢(X) Od(y) = 0in Q.

The proof of the following lemma follows from Lemma 3.5 and the
remark following Definition 2.5.

Lemma 3.7. Assume each L,,, « € D, isan OML, and each b, o, B €
D, a = B preserves digointness. If X,, ¥, € L, and Xg, yg € Lg, and if x, ~
Xg and y, ~ yg, then X, Oy, ~ X O Y.
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Lemma 3.8. Assume that each L,, « € D, isan OML and each ¢§, a,
B € D, a = B, preservesdigointness. Then X Oy existsin L forall X,y e L.

Proof. Let X,y € L. Thereexist o, B € D such that X, = X and y; =
y. Choose y € D such that o, § = . Then [X,, y, € L, such that X; = X,
andy, = V. Since L, isan OML, x, Oy, existsin L,. Since x,, y, = X, [
Yy, We have X,, y, = X, O, o

Now suppose that [T € L, X, ¥y = U. Then [B; e D, Us, = TU. Choose
9, € D, 83, v = 8. Then [y, Vs, Us, € Ls, such that X, = X, V5, = ¥,
and Us, = Uy, = U. Thus X, Y5, = Us,. This implies that there exist 3 € D
and Xs, Y5, Us € Ly such that X5 = X5, Y5 = Yo Us = Usy @A X5, Yo = Us.
Hence x5 [1y; = U, which implies that x; Oy; = Us. By Lemma 3.7, since
X5 ~ Xop, ~ Xy @nd Y5 ~ Y5, ~ Yy, We have x, Ly, = X%, OV, = % UYs =
U; = Uy, = U. Therefore, sinceX, = Xandy, =y, X Uy existsin L and X [J
y=x0y, =

As a consequence of Corollary 3.3, Lemma 3.5, and Lemma 3.8, we
obtain the following main result.

Theorem 3.9. Let ({L.}ocp; {df}a<p) be a directed system in € such
that each ¢ preserves digointness, and let (L, {$°},.p) be its direct limit.
Assume that each L, isan OML. Then L is an OML and each ¢* preserves
digointness; hence (L, {$d*},cp) € £, the category of OMLs with their
monomorphisms.

Proof. We need only show that each ¢* preserves digointness, since
the other assertions follow from the above-mentioned results. To this end,
fixa e D and let X, ¥, € L, be such that x, Oy, = 0. We claim that
b, b*yexistsin L and equals 0. To see this, supposethat [1 € L 3 ¢,
¢, = 1inL. Then (B = a > | = ¢P(z) for some z3 € Lg. As ¢ =
bR, we get PHEX,, PPPRY. = dP(Z3). Since P is an EA-monomorphism,
this implies that bgx,, diy. = z; and hence z; is a lower bound of { pgx,,
baYot inLg. Now, by Lemma3.5, ¢f isan OML-morphism, sinceit preserves
digointness; so we have 0 = (X, OY.) = diX, O dy.. This yields that
zz = 0 and therefore | = ¢P(z) = 0. This proves the claim, and hence
the theorem. m

Definition 3.10. Let L and P be posets. A map ¢: L - P is caled
monotone if x =< yin L implies that b(X) = ¢(y) in P. A monotone map ¢ :
L - Piscalled residuated provided that there exists a monotone map {: P
— L such that yib(X) = xOx € L and ds(p) = p Op € P.

Note that for each residuated map ¢: L - P there is a unique { as
above. This unique s is caled the residual of ¢. It is well known from the
theory of residuated maps [3] that a residuated map preserves al existing
joins. Moreover, we have the following result.



718 Habil

Lemma 3.11. Every residuated EA-morphism preserves disjointness.

Proof. Let L and P be EAs and let ¢: L — P be a residuated EA-
morphism. Let a, b € L witha Ob = 0. Then by the De Morgan law &’ [
b’ existsin L and equals (a O b)’ = 1. Since ¢ is residuated, ¢p(a’ O b') =
é(@') O ¢((b'). Since ¢ is an EA-morphism, (1) = 1, (@) = ¢(a)’, and
$(b’) = d(b)'. Thus 1 = ¢((a Ub)’) = d(a Tb’) = db(a)’ O d(b)’, and
so, by the De Morgan law again, b(a) O d(b) = 0. =

As a conseguence of Theorem 3.9 and Lemma 3.11, we obtain the
following result, which is due to Dacey [4] and Fischer and Ruttimann [5].

Corrollary 3.12. Let ({L.} o co; { df}o=p) beadirected systemin &£ with
residuated morphisms &g, and let (L, {$°},.p) be its direct limit. Then (L,
{db}acp) € &L. Moreover, the morphisms ¢*, a € D, are residuated.

Proof. That (L, {$*}.cp) € & follows immediately from Theorem 3.9
and Lemma 3.11. The proof that the ¢~ are residuated can be found in [5,
pp. 150-151]. =

Before we close this section, we would like to mention that Theorem
3.1 can be improved as follows. But, first, in the notation of Section 2, we
have the following

313 Lemma. XD Y, X € L,, ¥ € L, isdefined in L (as in Definition
2.6) iff there exists y = «, B such that $3x @ ¢Py is defined in L.

Proof. (O ): Assume that X @ y is defined in L, where x € L,, ¥ € Lg.
Then, by Definition 2.6, there exist 8 € D, xs e XN Lsandys € ¥y N L;
such that x; @ vs is defined in Ls. Since x5 ~ X, (y; = 9, a 3 ¢31x5 =
b, andsinceys ~y, Oy, =3, B > dI,y; = ¢Jy. Choosey = 3, vy, 2. Then

PIx = dYd X = dYdY % = dix  and  bly = bRbEy = b3, ys = dblys.

Now since x; @ s, is defined in L; and ¢ is a morphism, we get that
PY(% D Ys) = dix D dBy is defined in L., as desired.

(O): Assume that Oy = «, B such that ¢3x @ By is defined in L,.
Choose 8 = a, B, vy, and set x, := d3x and y, := $By. Thenx, e X N L,
since bix, = dIbsx = d§x, andy, € ¥ N L, since dly, = d3dly = bly.
Moreover, x, @y, = dx D By is defined in L,. Therefore, by Definition
26, X® yisdefinedinL. =

Note that Lemma 3.13 yields a ®-operationon L = {X: x € X =
Uqepla} by setting x @ y := (dSx © dBy) which is equivalent to the ©-
operation given in Definition 2.6. It is easy to check that this &-operation

is well-defined.
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Now using the above definition of & on L and using Lemma 3.13, it
can be shown that the proof of Theorem 3.1 and the results leading to it can
be adjusted to yield the following result, which is an improvement of Theorem
3.1. Thisimproved result is equivalent to Theorem 2.7 of [18] for difference
posets, since an effect algebra is equivaent to a difference poset [6].

3.14 Theorem. Direct limits exist in the category of effect algebras and
effect algebra-morphisms. That is, if ({Lu}acp; { d}a=p) isadirected system
of effect algebras, where ¢ is a morphism for al o, B € D, a = B, then
its direct limit exists (in the same category) and equals (L, { $*} 4cp), Where
L is as defined in Definition 2.6 and ¢* : L, — L is defined by ¢*x, = X;.
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